If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+3x^2=95
We move all terms to the left:
4x+3x^2-(95)=0
a = 3; b = 4; c = -95;
Δ = b2-4ac
Δ = 42-4·3·(-95)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-34}{2*3}=\frac{-38}{6} =-6+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+34}{2*3}=\frac{30}{6} =5 $
| 2/3(3q+6)=8+2q | | –1.1x–4=0.8 | | -1/2=-7/4u+8/3 | | (y)+(90)+(y-30)=180 | | 4/5v-7=9 | | 2a^-7a+3=0 | | 2y=-1/2y | | 1k^2-10k+20=0 | | -x=-4-3x+6 | | K^2-10k+20=0 | | F(x-6)=3^2+3x-6 | | 2y=1-2y | | 3n+8/5=4 | | 10a-2(a+5)=14 | | 4x+(-4)=10 | | 3x+9x+4=14x-6 | | 16p=7p+36 | | 2/3y-11=8/9y+5 | | 0=2.6+9.5x-(-1-9.7x) | | m+17=23 | | Y=|x+6| | | (x+22)+(2x-13)=180 | | 5x+2/2=3 | | 9x+2=34 | | (x+22)+(3x-13)=180 | | 75=5t+10 | | w/4-7=1 | | h/3+8=11 | | 3s-5=2s+25 | | -3d+-23=13 | | -25=n/5-33 | | -12t^2+20t+10=0 |